

なぜ固体で? >>>> 固体と溶液

どうやって?

回転拡散係数(Stokes-Einsteinの式): 剛体球

 $D = \frac{kT}{6 a} = \frac{d^2}{2D} = \frac{a:有効流体半径 d = 2a}{:粘度}$

例)水中のスクロース D=0.521×10⁻⁵cm²s⁻¹

$$d=10nm -> =10^{-11} s$$

 $d=1nm -> =10^{-13} s$

分子運動とNMRの観測

NMR観測量

スピンの相互作用

スペクトルの線形 緩和時間

スピンの相互作用・・・って?

相互:なにかとなにか

距離,相対角度が 時間依存する 相互作用

(Ix) (Fxx Fxy Fxz) (Bx) Iy (Fyx Fyy Fyz) (By Iz) Fzx Fzy Fzz (Bz) 空間部分×スピン部分 F(t)X A

相互作用と観測

相互作用 = $F(t) \times A$ 観測タイムスケールが運動の相関時間より 1)うんと長いとき $\overline{F(t)} = \frac{1}{0} \int_{0}^{0} F(t') dt'$ 運動により 平均化された 相互作用が 観測される

運動は無視出来る

3)近いとき・・・

2サイトの化学交換

交換が遅いとき

交換が速いとき

交換と観測タイムスケールが comparableなとき

NMR測定值 線形,緩和時間,…

観測のタイムスケール 線形の場合:線幅の逆数 × 2 < らい 緩和時間の場合:緩和時間の1% < らい

溶液におけるスピン相互作用

分子の等方的な 回転拡散の速度
d=10nm -> k=10¹¹ Hz
Hz

スピン相互作用 溶液中の分子の等方回転による平均化

化学シフト相互作用	~数10	kHz		等方值
双極子相互作用	~数10	kHz	$\mathbf{M} = \mathbf{M} + $	0!
四重極相互作用	~数10	kHz~ 数M H	Z	0!

結論: 溶液のNMRの観測値からは 距離や角度などの構造を反映する 情報は得られない・・・

磁場に平行な成分 - >磁場により影響を受けない 垂直な成分 - >磁場による平均化を受ける

例) Ix Sz -> (Ix cos t + Iy sin t) Sz → 0 truncation :ラーモア周波数~10⁸Hz **Truncationと緩和**

脇道:溶液NMRで距離情報を 得ることが出来るのはなぜか

双極子相互作用(磁場に垂直な成分) F×A(t) → F(t)×A(t) → F(t)×A(t) ↓ 0 分子運動 平均

緩和に寄与する双極子相互作用の 磁場に垂直な成分がある程度運動で 回復している.この大きさをNOEで 測定して距離をおおまかに求める

粉末試料での距離測定

1) From dipolar-broadened powder lineshapes

2) From flip-flop transition rates

1) 複数の異方的な相互作用による線形の重なり 化学シフト異方性, 双極子相互作用

2) 多スピン系では相互作用の多体問題

複数の異方的な相互作用による線形の重なり

化学シフト異方性 + 双極子相互作用から 化学シフト異方性を除いて, 双極子による 線形だけを観測したい

異方的な化学シフト相互作用 H = $1^{(,)}_{z1} + 2^{(,)}_{z2}$ 双極子相互作用 H = $d(,)_{z1}^{-1}_{z2}$

1) 180度パルス $I_{zi} \rightarrow -I_{zi}$ $I_{z1}I_{z2} \rightarrow I_{z1}I_{z2}$ 2) Magic angle spinning (MAS) (,) \rightarrow 0 but d(,) \rightarrow 0! \bigcirc

a) Insertion mechanism

b) Metathesis mechanism

¹³C dipolar powder pattern

 $Rc-c = 1.386 \pm 0.009$

Reference (Polyacetylene, 77K) C-C = 1.48C=C = 1.36

MASの問題点

化学シフト異方性 + 双極子相互作用から 化学シフト異方性を除いて, 双極子による 線形だけを観測したい 異方的な化学シフト相互作用 $H = (,)|_{z1} + 2(,)|_{z2}$ 双極子相互作用 $H = d(,)|_{z1}|_{z2}$

Magic Angle Spinning

例) Removal of dipolar broadening by MAS

B//Z d_Z $3\cos^2$ -1B//X d_X $3\sin^2$ \cos^2 -1B//Y d_Y $3\sin^2$ \sin^2 -1

 $d_x + d_y + d_z = 0 !!$

$H(t) = D(t) \times A(Spin arr A)$

MAS → D(t) = 0 ラジオ波照射 A → A(t)

Takegoshi, et al., Chem. Phys. Lett., 260 (1996) 331.

Fukuchi, et al., Magn. Reson. Chem., 45 (2007) S56

A 2D ¹³C- ¹³C exchange experiment

Spin Diffusion Polarization Transfer Magnetization Transfer

(1) Energy conservation

(2) Non-zero dipolar flip-flop interactions

A 2D ¹³C- ¹³C DARR exchange experiment

¹³C-¹H recoupling under MAS

Rotary resonance

$$\int_{1}^{n} = n R n = 1, 2$$

Modulatory resonance (MORE)

Rotor synchronized pul

pulses

Takegoshi, et al., Chem Phys. Lett., 344 (2001) 631; J. Chem. Phys., 118 (2003) 2325.

Various types of spectral overlap under recoupled ¹³C-¹H dipolar interactions

Lys Phe I & G ly Leu M et - NH 2

