# Solid-state NMR : targets& methods K. Takegoshi (Kyoto Univ.) 1) spin=1/2, rare spin, eg., ${}^{13}$ C, ${}^{15}$ N, ${}^{29}$ Si, ${}^{31}$ P, ${}^{113}$ Cd. .... $\delta_{iso}$ : high resolution NMR $\delta_{CSA}$ : Chemical-shift anisotropy Dipolar interactions : ${}^{13}C - {}^{13}C$ . ${}^{13}C - {}^{15}N$ Cross polarization (CP) Magic-angle spinning (MAS) **Dipolar decoupling&recoupling** 2) spin=1/2, abundant spin, i.e., $^{1}$ H $\delta_{iso}$ : high resolution NMR Multiple pulse decoupling

CRAMPS

3) Half-integer spins, e.g. Al, Na, O....

 $\delta_{iso}$  : high resolution NMR  $\delta_{CSA}$  : Chemical-shift anisotropy Quadrupolar coupling MQMAS, DOR, DAS • •

 4) Integer spins, e.g. <sup>2</sup>H, <sup>14</sup>N Quadrupolar coupling
So far, no practical methods for high-resolution observation



### Magic Angle Spinning







4-1





Hartman-Hahn condition  $(H_1:Tesla)$ 

H-H in Frequency unit







### **CP under MAS**

For the on-resonance spin  $\nu_{1H} = \nu_{1C} + n \nu_R$ For the off-resonance spins  $\nu_{1H} \neq \nu_{1C}^{eff} + n \nu_R$ 

#### Effective field

$$\left| \mathcal{V}_{\chi}^{\text{eff}} \right| = \sqrt{\mathcal{V}_{1\chi}^{2} + \Delta \mathcal{V}_{\chi}^{2}}$$





#### Ramped CP under MAS



#### CP dynamics



### Optimal contact time





# Decoupling efficiency





#### Decoupling and recoupling







J. Magn. Reson., 88, 393 (1990)



### Strucutural determination by solid NMR

Resolution of <sup>1</sup>H resonances is too bad....

We replace  $^{12}\text{C}$  and  $^{14}\text{N}$  by  $^{13}\text{C}$  and  $^{15}\text{N}$  to observed NMR...



### Uniform <sup>13</sup>C labeling



# Recoupling under MAS

Spin interaction  $\mathbf{H} \sim [\text{Space part}] \times [\text{Spin part}]$ 

Space part  $\sim \cos \nu_{R} t$ ,  $\cos 2 \nu_{R} t \rightarrow 0$ time average Spin part  $\rightarrow S(t)$  $\int_{0}^{\tau} H(t) dt \rightarrow \neq 0$  Recoupling

### Dipolar recoupling under MAS



#### eg. <sup>13</sup>C-<sup>15</sup>N recoupling under MAS





# A ZD $^{13}C ^{13}C$ exchange experiment



### A ZD $^{15}N$ - $^{13}C$ correlation experiment



### Angles by solid NMR



